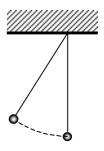
CORSO DI LAUREA IN INGEGNERIA INFORMATICA CORSO DI FISICA

A.A. 2000/2001

Compito scritto del 14 settembre 2001

ESERCIZI

ES1) Due sfere sono sospese tramite due fili, inestensibili, di massa nulla e di uguale lunghezza, in modo tale che siano in contatto tra loro. La massa della prima sfera sia m_1 =0.3kg e quella della seconda sia pari a m_2 =250g. La prima sfera viene spostata dalla posizione di equilibrio, sempre mantenendo il filo che la sostiene teso, in modo tale che il suo centro di massa salga di 6cm e viene in seguito lasciata libera di muoversi. A quale altezza risaliranno le due sfere dopo la collisione se:



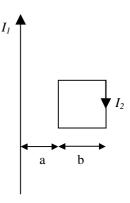
- a) L'urto è elastico:
- b) L'urto è completamente anelastico.

c)

NOTA: Nella soluzione del problema si trattino le sfere come punti materiali.

ES2) Determinare la forza per unità di area con la quale si respingono, nel vuoto, due piani infiniti carichi elettricamente ed uniformemente con la stessa densità di carica di 1.5×10^{-5} C/m².

 $\pmb{\text{ES3}}$) Un filo indefinito percorso da una corrente stazionaria $I_1{=}0.4A$ è complanare ad una spira quadrata di lato b=8cm percorsa da una corrente $I_2{=}4A$, come mostrato in figura. La distanza tra filo e spira è pari a a=2cm. Si determini direzione, verso ed intensità della forza che il filo esercita sulla spira. I due circuiti siano nel vuoto.



DOMANDE

- **D1**) Dare la definizione generale di forza conservativa e ricavare l'espressione dell'energia potenziale nel caso della forza peso.
- **D2**) Si ricavi l'espressione dell'energia elettrostatica totale posseduta da un sistema di N cariche elettriche puntiformi poste a distanze relative note. Scrivere l'espressione in termini del potenziale elettrostatico esperimentato da ogni carica elettrica.
- **D3**) Dare l'espressione della legge di Faraday-Neumann-Lenz, spiegando il significato di tutte le grandezze fisiche che compaiono in essa e mettendo in evidenza le convenzioni sui segni utilizzate.

CORSO DI LAUREA IN INGEGNERIA INFORMATICA CORSO DI FISICA

Compito scritto del 14 settembre 2001 Soluzioni

 $\mathbf{ES}\ \mathbf{1}$) Una volta lasciata libera, la sfera di massa m_1 si metterà in moto acquistando energia cinetica il cui valore immediatamente prima dell'urto può essere calcolato sfruttando il principio di conservazione dell'energia meccanica:

$$T_0 = T_{fin}^{(1)} = U_{in}^{(1)} = m_1 g h_{in}^{(1)}$$

tale valore diventa il valore iniziale dell'energia cinetica della sfera di massa m_1 nel processo d'urto tra le due sfere. Da ora in poi i suffissi in e fin faranno riferimento alle grandezze fisiche prima e dopo l'urto.

Urto elastico

Nel caso degli urti elastici si ha sempre conservazione della quantità di moto e dell'energia cinetica del sistema nel corso dell'urto, da cui:

$$\begin{cases} m_1 v_{in}^{(1)} = m_1 v_{fin}^{(1)} + m_2 v_{fin}^{(2)} \\ T_{in}^{(1)} + T_{in}^{(2)} = T_{fin}^{(1)} + T_{fin}^{(2)} \end{cases} \text{ da cui}$$

$$\begin{cases} m_1 v_{in}^{(1)} = m_1 v_{fin}^{(1)} + m_2 v_{fin}^{(2)} \\ \frac{1}{2} m_1 \left(v_{in}^{(1)} \right)^2 = \frac{1}{2} m_1 \left(v_{fin}^{(1)} \right)^2 + \frac{1}{2} m_2 \left(v_{fin}^{(2)} \right)^2 \end{cases}$$

Risolvendo il sistema si ottiene:

$$\begin{cases} v_{fin}^{(1)} = \frac{m_1 - m_2}{m_1 + m_2} v_{in}^{(1)} \\ v_{fin}^{(2)} = \frac{2m_1}{m_1 + m_2} v_{in}^{(1)} \end{cases}$$

$$\begin{cases} T_{fin}^{(1)} = \frac{1}{2} m_1 \left[v_{fin}^{(1)} \right]^2 = \frac{1}{2} m_1 \left[v_{in}^{(1)} \right]^2 \left(\frac{m_1 - m_2}{m_1 + m_2} \right)^2 = T_0 \frac{(m_1 - m_2)^2}{(m_1 + m_2)^2} \\ T_{fin}^{(2)} = \frac{1}{2} m_2 \left[v_{fin}^{(2)} \right]^2 = \frac{1}{2} m_2 \left[v_{in}^{(1)} \right]^2 \left(\frac{2m_1}{m_1 + m_2} \right)^2 = T_0 \frac{4m_1 m_2}{(m_1 + m_2)^2} \end{cases}$$

Utilizzando di nuovo il principio di conservazione dell'energia meccanica separatamente per ognuna delle due sfere, possiamo ricavare la quota massima a cui si portano le due sfere dopo l'urto. Si ha:

$$\begin{cases} U_{max}^{(1)} = m_1 g h_{max}^{(1)} = T_{fin}^{(1)} = T_0 \frac{\left(m_1 - m_2\right)^2}{\left(m_1 + m_2\right)^2} = m_1 g h_{in}^{(1)} \frac{\left(m_1 - m_2\right)^2}{\left(m_1 + m_2\right)^2} \\ U_{max}^{(2)} = m_2 g h_{max}^{(2)} = T_{fin}^{(2)} = T_0 \frac{4m_1 m_2}{\left(m_1 + m_2\right)^2} = m_1 g h_{in}^{(1)} \frac{4m_1 m_2}{\left(m_1 + m_2\right)^2} \end{cases}$$

da cui:

$$\begin{cases} h_{max}^{(1)} = h_{in}^{(1)} \frac{(m_1 - m_2)^2}{(m_1 + m_2)^2} \\ h_{max}^{(2)} = h_{in}^{(1)} \frac{4m_1^2}{(m_1 + m_2)^2} \end{cases}$$
 e
$$\begin{cases} h_{max}^{(1)} = 0.5mm \\ h_{max}^{(2)} = 7.1cm \end{cases}$$

Urto completamente anelastico

In un urto completamente anelastico i due corpi rimangono solidali dopo l'urto e continuano il moto con la stessa legge oraria. Si ha quindi che:

$$\vec{v}_{fin}^{(1)} = \vec{v}_{fin}^{(2)}$$

Per la conservazione della quantità di moto del sistema si ha:

$$v_{fin} = v_{fin}^{(1)} = v_{fin}^{(2)} = \frac{m_1}{m_1 + m_2} v_{in}^{(1)}$$

L'energia cinetica di uscita dall'urto sarà data da:

$$T_{fin} = \frac{1}{2} (m_1 + m_2) v_{fin}^2 = T_0 \frac{m_1}{m_1 + m_2}$$

Utilizzando di nuovo la conservazione dell'energia meccanica per il moto successivo all'urto delle due sfere solidali, si ottiene l'espressione della quota massima raggiunta:

$$U_{max} = (m_1 + m_2)gh_{max} = T_{fin} = T_0 \frac{m_1}{m_1 + m_2} = m_1gh_{in}^{(1)} \frac{m_1}{m_1 + m_2}$$

da cui semplificando si ottiene:

$$h_{max} = h_{in}^{(1)} \frac{m_1^2}{(m_1 + m_2)^2}$$
 e $h_{max} = 1.79cm$

ES2) Il campo elettrico generato nel vuoto da un piano infinito carico uniformemente con densità di carica σ:

$$E_0 = \frac{\sigma}{2\varepsilon_0}$$

ha linee di campo parallele tra loro e perpendicolari al piano, è uniforme ed indipendente dalla distanza dal piano. La forza che agisce su un elemento di superficie S del secondo piano è data da:

$$F = E_0 \sigma S$$
 da cui $\frac{F}{S} = \sigma E_0 = \frac{\sigma^2}{2\varepsilon_0} = 12.7 N / m^2$

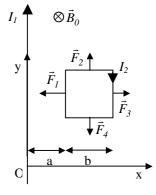
ES3) Il filo definito percorso da corrente genererà intorno a se un campo di induzione con linee di campo chiuse circolari, contenute in piani perpendicolari al filo e con verso tale che la corrente elettrica le veda percorse in senso antiorario. Con riferimento alla figura, il campo di induzione è entrante nel foglio ed ha intensità data da:

$$B_0 = \frac{\mu_0 I_1}{2\pi x}$$

Le due forze F_2 ed F_4 sono uguali ed opposte e si annullano. Le forze F_1 ed F_3 saranno dirette lungo l'asse x, con verso opposto e intensità differente. Si ha in modulo:

$$F_{1} = \left| \int\limits_{lato1} I_{2} \overrightarrow{dl} \times \overrightarrow{B}_{0} \right| = \int\limits_{lato1} I_{2} B_{0}(a) dx = \int\limits_{lato1} I_{2} \frac{\mu_{0} I_{1}}{2\pi a} dx = I_{2} \frac{\mu_{0} I_{1}}{2\pi a} \int\limits_{lato1} dx = \frac{\mu_{0} I_{1} I_{2} b}{2\pi a}$$

diretta nel verso negativo dell'asse x. Per la forza sul lato 3 si ha invece in modulo:



$$F_{3} = \left| \int_{lato3} I_{2} \overrightarrow{dl} \times \overrightarrow{B}_{0} \right| = \int_{lato3} I_{2} B_{0}(a+b) dx = \int_{lato3} I_{2} \frac{\mu_{0} I_{1}}{2\pi(a+b)} dx = I_{2} \frac{\mu_{0} I_{1}}{2\pi(a+b)} \int_{lato3} dx = \frac{\mu_{0} I_{1} I_{2} b}{2\pi(a+b)}$$

diretta nel verso positivo dell'asse delle x. Nelle integrazioni si noti che il campo di induzione assume un valore costante ma differente per i due lati. La componente x della forza totale agente sulla spira sarà in modulo data da:

$$|F_x| = |F_3 - F_1| = \left| \frac{\mu_0 I_1 I_2 b}{2\pi} \left(\frac{1}{a+b} - \frac{1}{a} \right) \right| = 1.02 \cdot 10^{-6} N$$

diretta nel verso negativo dell'asse x